

Hyperbaric Oxygen Therapy (HBOT)

- Medical director outpatient wound care and hyperbaric treatment center
- Texas Health Harris Methodist Hospital
 Hurst-Euless-Bedford (H.E.B.)
- Healogics Specialty Physicians

Objectives

- Become familiar with the fundamental aspects of wound healing and its interrelationship with oxygen
- Become familiar with the process of evaluating patients for and instituting hyperbaric oxygen therapy
- Recognize the physiologic and pharmacologic benefits of hyperbaric oxygen therapy

Hyperbaric Oxygen Therapy (HBOT)

Back to the basics

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading 8. Pain Control
- 9. Host Factors

The Nine Essentials of Wound Healing

- **1. Adequate Perfusion**
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
- 8. Pain Control
- 9. Host Factors

The Nine Essentials of Wound Healing

Pulse exam, vascular history ABI 0.9-1.2 TBI greater than 0.65

If you can't get water to the garden.....the garden won't grow!!!!

The Nine Essentials of Wound Healing

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
- 8. Pain Control
- 9. Host Factors

The Nine Essentials of Wound Healing

After adequate perfusion debridement in the form of

- Sharp surgical
 Selective
- SelectiveAutolytic
- Enzymatic
- Biologic

Wounds Won't Heal in a SEWER!!

The Nine Essentials of Wound Healing

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
- 8. Pain Control
- 9. Host Factors

The Nine Essentials of Wound Healing

Wounds With BUGS Don't Heal!!

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
 8. Pain Control
- 9. Host Factors

The Nine Essentials of Wound Healing

Wounds Don' t Heal in a Swamp!!

The Nine Essentials of Wound Healing

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
- 8. Pain Control
- 9. Host Factors

Wounds Don't Heal Unless The Environment Supports Healing

The Nine Essentials of Wound Healing

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
- 8. Pain Control
- 9. Host Factors

The Nine Essentials of Wound Healing

Tissue Growth is <u>OUR</u> Business

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
- Pain Control
 Host Factors

The Nine Essentials of Wound Healing

Wounds Don't Heal Under Pressure!!

The Nine Essentials of Wound Healing

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
- 8. Pain Control
- 9. Host Factors

Controlled Pain = Better Compliance

The Nine Essentials of Wound Healing

- 1. Adequate Perfusion
- 2. Non-Viable Tissue
- 3. Inflammation or Infection
- 4. Edema
- 5. Wound Microenvironment
- 6. Tissue Growth Optimized
- 7. Off-Loading
- 8. Pain Control
- 9. Host Factors

The Nine Essentials of Wound Healing

Wounds Don' t Heal Without Building Blocks!!

Enhancement of Healing in Selected Problem Wounds

Normal wound healing Stages Hemostasis Inflammatory Proliferative Remodeling

Enhancement of Healing in Selected Problem Wounds

Normal wound healing Stages 1. Hemostasis

1. Hemostasis
 stop bleding
 Platelet activation to form clots
 Platelet activation to form clots
 Platelet degranulation release cytokines and growth factors
 2. Inflammatory
 The cleanup crew
 Leukocytes with oxygen-dependent killing mechanisms
 Macrophages with phagocytosis

Enhancement of Healing in Selected Problem Wounds

Normal wound healing Stages 3. Proliferative granulation tissue formation Angiogenesis epithelization fibroblast 4. Remodeling immature collagen is replaced by mature collagen

Stages of wound healing affected by O2 concentration

Fibroblast proliferation Collagen synthesis Angiogenesis Antimicrobial activity Intracellular leukocyte killing Neutralization of endotoxins

Benefits of Hyperbaric Oxygen

Physiologic Effects:

- Improved leukocyte function and bacterial killing
 Antibiotic potentiation
- Enhanced collagen synthesis and cross-linking

Pharmacological Effects:

- Direct antimicrobial effects, toxin synthesis suppression
- Blunting of systemic inflammatory responses
- Prevention of leukocyte activation and adhesion PDGF-BB receptor stimulation (multiple effects)
- VEGF release and angiogenesis
- Detoxification (CO, CN, H₂S)

Hyperbaric Oxygen Therapy

- Hyperbaric Oxygen Therapy
 - Is the systemic intermittent administration of 100% oxygen delivered under pressure
 - Usally 2.0 to 2.5 ATA

Hyperbaric Oxygen Therapy

- One ATA
 - 14.7 psi
 - 33fsw
- Mechanical effect
 - Boyle's Law
- Physiologic effect
 - Henry' Law
 - The partial pressure and concentration of a gas dissolved in liquid is determined by the partial pressure of the gas on the surface of the liquid.

Hyperbaric Oxygen Therapy

• HBOT

- Increases O2 tension 10 to 13 times higher then O2 breathed at ambient pressure
- Increases the capacity of blood to carry and deliver oxygen to compromised tissues
- At these O2 tensions oxygen now acts as a drug with several effects.

Emergency/Acute Indications

- Cerebral Arterial Air or Gas Embolism
- Carbon Monoxide Poisoning
- Cyanide Poisoning
- Hydrogen Sulfide Poisoning
- Clostridial Myositis & Myonecrosis
- Acute Traumatic Ischemia
 - Crush Injury
 - Compartment Syndrome Replantation Limb/Digits Etc.

Emergency/Acute Indications

- Decompression Sickness
- Exceptional Blood Loss (Anemia)
- Intracranial Abscess
- Necrotizing Soft Tissue Infections
- Thermal Burns (Not CMS Approved)
- Combined Synergistic Necrotizing STI
- Compromised Skin Grafts/Flaps

Acute Traumatic Ischemia

Benefits of HBOT

Hyperoxygenation Increases in capillary reabsorption decreasing edema Reduces reperfusion injury generates scavengers to destroy oxygen radicals

Acute Traumatic Ischemia

• 4 year old slipped and fell into a riding lawn mower, sustaining a mid-calf amputation of his leg. Leg was successfully replanted.

Tx' d aggressively with HBO

Acute Traumatic Ischemia

Appearance of muscle three days after replantation shows 100% viability as HBO counteracted reperfusion injury.

Acute Traumatic Ischemia

Three Months after Injury HBO @ 2.4 ATA x of

- HBO @ 2.4 ATA x 90 minutes q8h x 6
- Then q12h x 4

Acute Traumatic Ischemia

The result was excellent function of the leg. The patient regenerated his nerves and ended up with a sensate foot. He was able to walk and run with the aid of a brace.

Crush Injury

- Crush Injury with avulsion of palmar skin
 - Appearance at time of presentation 1 hour after injury

Crush Injury

Elevation of avulsed palmar skin of crushed right hand

Crush Injury

Immediate post-op view Note vertical blue line through midpalm Area not expected to survive

17

Chronic/Elective Indications

Problem Wounds

- Diabetic Foot Ulcers (Chronic; Wagner III)
- Arteriolar Insufficiency
- Etc.
- Chronic Refractory Osteomyelitis
- Delayed Radiation Injury
 Soft Tissue
- Bony
- Meleney Ulcer (Invasive Group A Strep)

DFU 11/20/09 BODY PART Ranterior AR: HR WOUND: # DATE: 20 Nove, cm 1 2 3 4

Problem Wounds

Achilles tendon rupture repair

■ 4 months post-op

Suture line breakdown 2 weeks post-op

 Multiple failed attempts at secondary closure

Problem Wounds

TCOMs in the periwound area demonstrated soft tissue hypoxia immediately adjacent to wound edges

Problem Wounds

- 5 weeks post-HBO
 HBO @ 2 ATA x 90 minutes q24h x 20
- Routine wound careOral antibiotics

- Posterior view
- Excellent range of motion
- Ambulating without difficulty

Problem Wounds

- ■10 weeks post-HBO Complete healing
 - No surgical
 - debridement

No BKA

HBO @ 2 ATA x 90 minutes q24h x 20

Soft Tissue Radionecrosis

Malignant Fibro-Histiocytoma ■ Wide excision

Radiation therapy

2 months post-op

- Dehiscence
- Radionecrosis
- Purulent drainage

Soft Tissue Radionecrosis

Close-up view ∎ 9 x 6.5 cm

Stage III/IV Ulceration

Soft Tissue Radionecrosis

- 10 days post-STSG
- Ambulating without difficulty
- No further procedures required

Compromised Flag

- Complete Healing HBO @ 2.4 ATA x 90 minutes q12h x 6
- Then 2 ATA x 90 minutes q24h x 14
- No further procedures necessary

Relative Contraindications

- Upper Respiratory Infections
- Chronic Sinusitis
- Emphysema w/CO₂ Retention
- High Fevers
- History of Seizure Disorder
- Pregnancy

Relative Contraindications (Continued) History of Surgery for Otosclerosis PE tubes Viral Infections Get worse Congenital Spherocytosis Hemolysis in presence of increased paO² History of Optic Neuritis May be associated with blindness

Complications & Side Effects

- Pulmonary toxicity case report
 44-year-old male with no previous cardiac or pulmonary history developed acute pulmonary failure following his fourth HBO treatment was hospitalized for approximately 3 weeks 10 days of which was on a ventilator prior to recovery.

